講座名稱:On an integrable multi-component Camassa-Holm system arising from Mobius geometry
講座人:康靜 教授
講座時(shí)間:9月18日8:30-11:30
地點(diǎn):騰訊會(huì)議 194409278 密碼: 123456
講座人介紹:
西北大學(xué)數(shù)學(xué)學(xué)院教授、博士生導(dǎo)師。主要研究方向?yàn)閿?shù)學(xué)物理和非線性可積系統(tǒng)。具體的研究課題包括:對(duì)稱和李群在微分方程中的應(yīng)用、非線性可積系統(tǒng)可積性及孤立波解、Liouville相關(guān)性理論及其應(yīng)用。主持多項(xiàng)國(guó)家自然科學(xué)基金,一項(xiàng)陜西省自然科學(xué)基金杰出青年項(xiàng)目,入選“2017年度陜西省高校青年杰出人才支持計(jì)劃”。
講座內(nèi)容:
In this talk, we mainly study the geometric background, integrability and peaked solutions of a (1+n)-component Camassa-Holm (CH) system and some related multi-component integrable systems. Firstly, we show this system arises from the invariant curve flows in the Mobius geometry and serves as the dual integrable counterpart of a geometrical (1+n)-component KdV system in the sense of tri-Hamiltonian duality. Moreover, we obtain an integrable two-component modified CH system using a generalized Miura transformation. Finally, we provide a necessary condition, under which the dual integrable systems can inherit the Backlund correspondence from the original ones.
主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院